Способы получения гелия

Версия для печатиВерсия для печати

Получение гелия в промышленности осуществляется в основном путем конденсации из гелийсодержащих газов. Добыча гелия из минералов или из воздуха является нерентабельной, но об этом мы расскажем ниже. Газ гелий очень редкий гость в воздушном пространстве планеты Земля и его объемное содержание в воздухе составляет всего 0,00046-0,00052% и с этим связаны основные трудности и проблемы в его получении.

Получение гелия

Как производят гелий из природного газа

Основным способом получения гелия является метод фракционной конденсации из природных гелийсодержащих газов, т.е. методом глубокого охлаждения. Причем используется его характерное свойство - наиболее низкая по сравнению с известными веществами температура кипения. Это позволяет конденсировать все сопутствующие гелию газы, прежде всего метан и азот. Процесс осуществляется обычно в две стадии:

  • выделение так называемого сырого гелия (концентрата, содержащего 70-90% He)
  • очистка с получением технически чистого гелия.

На рисунке ниже приведена одна из схем установки для добычи гелия из природного газа.

Схема установки для извлечения гелия из природного газа

Схема установки для добычи гелия из природного газа

Газ сжимается до 25 атмосфер и под этим давлением поступает в установку. Очистка от углекислого газа (CO2) и частичная осушка газа производятся в скрубберах, которые орошаются раствором, содержащим:

  • 10-20% моноэтаноламина
  • 70-80% диэтиленгликоля
  • 5-10% воды

После скрубберов в газе остается 0,003-0,008% углекислоты CO2, а точка росы не превышает 5°С. Дальнейшая осушка осуществляется в адсорберах с силикагелем, где достигается температура точки росы -45°С.

Под давлением около 20 атмосфер чистый сухой газ поступает в предварительный теплообменник 1, где охлаждается до -28° С обратными газовыми потоками. При этом происходит конденсация тяжелых углеводородов, которые отделяются в сепараторе 2. В аммиачном холодильнике 3 газ охлаждается до -45°С, конденсат отделяется в сепараторе 4. В основном теплообменнике 5 температура газа снижается до -110°С, в результате чего конденсируется значительная часть метана. Паро-жидкостная смесь (около 20% жидкости) дросселируется до давления 12 атмосфер в первый противоточный конденсатор 6, на выходе из которого паро-газовая смесь обогащается гелием до 3%. Образовавшийся в трубках конденсат стекает в отпарную секцию, на тарелках которой из жидкости удаляется растворенный в ней гелий, присоединяющийся к паро-газовому потоку.

Жидкость дросселируется до 1,5 атмосфер в межтрубное пространство конденсатора, где служит хладагентом. Образовавшийся здесь пар выводится через теплообменники 5 и 1. Паро-газовая смесь, выходящая из конденсатора 6 и содержащая до 3% He, под давлением 12 атмосфер идет во второй противоточный конденсатор 7, состоящий из двух частей: в нижней части находится змеевиковый теплообменник, в трубках которого испаряется сдросселированная с 12 до 1,5 атмосфер кубовая жидкость, а в верхней части - прямотрубчатый теплообменник, в межтрубном пространстве которого кипит азот при температуре -203°С и давлении 0,4 атмосферы. В результате конденсации компонентов газовой смеси в нижней части аппарата 7 газ обогащается гелием до 30-50%, а в верхней части - до 90-92%.

Сырой гелий такого состава под давлением 11-12 атмосфер поступает в теплообменники, где нагревается и выводится из установки. Так как в природном газе содержатся небольшие примеси водорода, то в сыром гелии концентрация водорода увеличивается до 4-5%. Удаление водорода производят каталитическим гидрированием с последующей осушкой газа в адсорберах с силикагелем. Сырой гелий сжимается до 150- 200 атмосфер мембранным компрессором 8, охлаждается в теплообменнике 9 и поступает в прямоточный змеевиковый конденсатор 10, охлаждаемый азотом, кипящим под вакуумом. Конденсат (жидкий азот) собирается в сепараторе 11 и периодически выводится, а несконденсировавшийся газ, содержащий примерно 98% He идет в адсорбер 12 с активированным углем, охлаждаемым жидким азотом. Гелий, выходящий из адсорбера, содержит примесей менее 0,05% и поступает в баллоны 13 в качестве продукта.

Особенно богаты гелием природные газы в США, что определяет широкое применение гелия для TIG сварки в этой стране.

Получение гелия из минералов

Еще одним способом получения гелия в промышленности является добыча его из радиоактивных минералов содержащих уран, торий и самарий:

  • клевеит
  • фергюсонит
  • самарскит
  • гадолинит
  • монацит
  • торианит

В частности монацитовые пески, крупное месторождение которых имеется в Траванкоре (Индия):

Монациты месторождения в Траванкоре содержат около 1 см3 гелия в 1 г руды.

Для производства гелия из монацита необходимо нагреть в закрытом сосуде монацит до 1000°С. Гелий выделяется вместе с углекислым газом (CO2), который затем поглощался раствором едкого натрия (NaOH). Остаточный газ содержит 96,6% He. Дальнейшая очистка производится при 600°С на металлическом магнии для удаления азота, а затем при 580°С - на металлическом кальции для удаления оставшихся примесей. Продукционный газ содержит свыше 99,5% He. Из 1000 т монацитового песка можно получить около 80 м3 чистого гелия. Такой способ получения гелия не представляет технического и промышленного интереса..

Чтобы добыть один кубометр гелия из монацитового песка, нужно переработать 12,5 тонн минерала

Получение гелия из воздуха

В небольшом количестве гелий находится в воздухе, из которого он может быть получен в качестве побочного продукта при получении кислорода и азота из воздуха. В промышленных ректификационных колоннах для разделения воздуха над жидким азотом собирается остающаяся газообразной смесь неона и гелия. На рисунке ниже показан аппарат Клода, специально приспособленный для отделения такой смеси.

Аппарат Клода для выделения неона и гелия из воздуха

Аппарат Клода для выделения неона и гелия из воздуха

Газ, выходящий из аппарата через вентиль R, охлаждается в змеевике S, который поливается жидким азотом из Т, чтобы сконденсировать остаточный азот. Если вентиль R немного открыть, получается смесь, содержащая очень мало азота. При таком методе промышленного получения гелия, кроме трудности, заключающейся в необходимости обработать большое количество воздуха, встречается еще дополнительное затруднение - необходимость отделения гелия от неона. Это отделение может быть выполнено с помощью жидкого водорода, в котором неон отвердевает, или с помощью адсорбции неона активированным углем, охлаждаемым жидким азотом.

Производство гелия из воздуха нецелесообразно вследствие его малого количества - 0,00046% объема или 0,00007% веса. Расчеты показывают, что стоимость одного кубометра гелия, добытого из воздуха, будет в тысячи раз больше, чем при добывании его из природных газов. Такая высокая стоимость, конечно, исключает возможность промышленного получения гелия из воздуха.

Чтобы добыть 1 кубометр гелия воздуха, нужно выделить 116 т азота.