Сварка

Все о сварке

Промышленное оборудование, зажимные приспособления и кондукторы

Для выполнения основных и вспомогательных операций процесса сварки необходимы кроме сварочного аппарата, источника питания дуги и аппаратуры управления, дополнительные приспособления и механизмы, образующие вместе с указанным выше оборудованием пост или установку для ручной, автоматической или полуавтоматической сварки. Эти приспособления и механизмы весьма различны в зависимости от формы и размеров изделия, характера производства и т. д. Они могут быть разделены на следующие группы:

Остаточные напряжения и деформации

При сварке в каждой точке сварного соединения или конструкции возникают напряжения и деформации. В начальный период сварки, когда происходит нагрев металла, и в процессе последующего охлаждения они существенно изменяются по величине, знаку, характеру распределения в том или ином сечении и их принято называть временными. Временные напряжения и деформации по мере охлаждения постепенно переходят в остаточные, которые для большинства конструкционных материалов существуют в металле в течение всего дальнейшего периода эксплуатации.

Сварка трением

В 1956 г. токарь-новатор А.М. Чудиков предложил и практически осуществил сварку трением для ряда деталей. В этом виде сварки соединение получают при совместном пластическом деформировании и нагреве деталей. Нагрев происходит в результате трения двух поверхностей сжатых между собой деталей, то есть механическая энергия преобразуется в тепловую. Наибольшее распространение получила схема сварки, когда нагрев трением осуществляется в контакте между деталями, одна из которых вращается относительно другой.

Введение в механику разрушения

Механика разрушения - это наука о напряженно-деформированном состоянии тел с трещинами, определении их предельно равновесного состояния, критических размеров трещин или величин нагрузок, оценке возможностей распространения трещин в элементах конструкций. Механика разрушения занимается также и вопросами, связанными с распространением усталостных трещин.

Сварные соединения из арматурной стали

Арматурные стали

Сталь горячекатанная круглая гладкого и периодического профиля для армирования обычных и предварительно напряженных конструкций (ГОСТ 5781-82) в зависимости от механических свойств подразделяется на 6 классов (см. таблицу ниже), а сталь стержневая арматурная термомеханически и термически упрочненная периодического профиля (ГОСТ 10884-81) - на 5 классов (см. таблицу ниже).

Механические свойства горячекатанной арматурной стали

Конструирование сварных конструкций из алюминия и его сплавов

При проектировании конструкций из алюминиевых сплавов необходимо учитывать некоторые их особенности. Так для алюминиевых сплавов при понижении температуры практически не изменяется ударная вязкость. Благодаря этому факту конструкции из алюминиевых сплавов нашли широкое распространение при эксплуатации в условиях низких температур. В тоже время конструкции из алюминиевых сплавов имеют значительно меньшую жесткость по сравнению со стальными из-за более низкого значения модуля упругости (почти в 3 раза).

Проектирование динамически нагруженных сварных конструкций

Главные принципы проектирования конструкций

Проектирование сварных конструкций c преобладающей статической нагрузкой

Пример проектирования колонны, нагруженной статической нагрузкой. Колонна состоит из трех основных частей - оголовка, стойки и базы. Требуется спроектировать центрально нагруженную силой N стойку сплошного сечения длиной l. То есть, подобрать сечение стойки - основного несущего элемента колонны. Последовательность проектирования следующая:

1. Определение требуемой площади поперечного сечения стойки исходя из условия прочности и устойчивости по формуле:

Обозначение сварных швов

Сварные конструкции характеризуются широким диапазоном применяемых толщин, форм и размеров соединяемых элементов, а также многообразием взаимного расположения свариваемых деталей.

Металлографический анализ

Многочисленные и отличающиеся между собой методы исследования металлов можно разделить на две группы:

1. Методы, которые позволяют определить строение и преобразования, которые протекают в металлах. Эти методы делятся на структурные методы, которые позволяют непосредственно наблюдать строение металлов и методы, которые базируются на связи между строением и свойствами металлов.

2. Методы, которые позволяют непосредственно определять свойства металлов, прежде всего механические, а также физические химические и др.

Страницы