Взаимодействие сварочной ванны с газами при газовой сварке

Версия для печатиВерсия для печати

В процессе газовой сварки газы в сварочную ванну попадают из пламени и окружающей атмосферы как непосредственно, так и в результате протекающих там химических реакций.

Процесс растворения газов в жидком металле может быть разбит на три стадии:

  • поглощение атомов газов поверхностью металла;
  • взаимодействие этих газов с металлом поверхностных слоев;
  • диффузия образовавшихся продуктов в глубь жидкой ванны.

Источниками кислорода и водорода являются воздух, флюсы, защитные газы, а также оксиды, поверхностная влага и другие загрязнения основного и присадочного металла. Азот попадает в зону сварки главным образом из воздуха. Характер взаимодействия газов с различными металлами различен.

Свойства металла шва в большей степени определяются процессами окисления и раскисления, которые происходят в сварочной ванне при взаимодействии газовой и шлаковой фаз с жидким металлом. В сварочной ванне в зоне высоких температур происходит распад молекул газа на атомы (диссоциация).

Активность газов в атомарном состоянии резко повышается. Находящийся в газовой фазе молекулярный и атомарный кислород соединяется с металлом сварочной ванны. Одновременно происходит окисление примесей и легирующих элементов, содержащихся в металле. В первую очередь окисляются элементы, обладающие большим сродством к кислороду. Железо с кислородом образует три соединения: оксид FeO, содержащий 22,7% О2, оксид Fe3О4, содержащий 27,64% О2, и оксид Fe2О3, содержащий 30,06% O2. Из всех трех оксидов растворимы в железе FeO и Fe3О4. В твердом железе растворимость кислорода невелика. Если жидкий металл имеет элементы раскислители, которые имеют большее сродство к кислороду, чем металл сварочной ванны, то в этом случае концентрация кислорода в сварочной ванне может быть значительно уменьшена за счет элементов раскислителей.

Водород также растворяется в большинстве металлов. Он может находиться в составе газовой фазы в молекулярном или атомарном состоянии, это зависит от температуры. При более высоких температурах молекулярный водород диссоциирует на атомарный и ионизированный. Водород - вредная примесь, так как является причиной пор, микро- и макротрещин в шве и зоне термического влияния. Применяются два способа борьбы с водородом: физический - это защита сварочной ванны от компонентов, содержащих водород (сушка, прокалка материалов, удаление ржавчины и др.), химический - перевод водорода из растворимого состояния в нерастворимое.

Азот, как и водород, в зависимости от температуры может находиться в молекулярном, атомарном и ионизированном состояниях. Основным источником азота в сварочной ванне является окружающий воздух. Азот растворяется в элементах, с которыми образует соединения, называемые нитридами. Азот не растворяется в меди, никеле, золоте, серебре и не образует с ними химических соединений. Азот способствует образованию пор в металле шва.

Углерод, содержащийся в сварочной ванне, является хорошим раскислителем. В сварочной ванне он присутствует в виде углекислого газа. Образующийся оксид углерода СО в металле шва не растворяется, в процессе кристаллизации сварочной ванны он выделяется и образует поры.

Удаление избыточного количества вредных примесей и газов из металла шва называют рафинированием металла.

В сталях вредными газами и примесями являются азот N2, водород Н2, кислород О2, сера S, фосфор Р и др. Рафинирование выполняют с помощью окислительно-восстановительных процессов. Легирование металла шва можно получить расплавлением присадочной проволоки либо введением в покрытие или флюс порошкообразных металлических добавок. При расплавлении сварочного флюса и электродного покрытия сердечника порошковой проволоки образуется шлак. В расплавленном состоянии металл и шлак представляют собой несмешивающиеся жидкости. Шлаки не растворяются в металлах (кроме некоторых элементов, их составляющих). Сварочные шлаки, которыми покрыт расплавленный металл, защищают его от вредного воздействия воздуха, предохраняют расплавленные капли электродного металла от воздуха при их прохождении через дуговой промежуток. Кроме того, в результате химического взаимодействия между металлом и шлаком шлак раскисляет металл сварочной ванны, растворяет вредные примеси, легирует металл шва, накапливая теплоту, замедляет охлаждение металла шва, что способствует улучшению его качества. В зависимости от элементов, составляющих шлак, его химическое воздействие на жидкий металл может быть окисляющим или раскисляющим.

Для получения необходимых свойств металла шва важное значение имеют физические и технологические свойства шлака. Сварочный шлак должен обладать меньшей температурой плавления, чем основной металл (примерно на 200- 350°С). Это необходимо для того, чтобы шлак в расплавленном состоянии полностью покрыл всю поверхность сварочной ванны (эффективное защитное действие шлака, улучшается формирование шва). Шлак должен иметь плотность меньше, чем плотность основного металла; хорошую жидкотекучесть для быстрого протекания в нем химических процессов; способность защищать расплавленный металл от воздуха и вместе с тем легко пропускать газы, выделяющиеся из ванны металла; хорошую растворимость различных соединений; минимальное количество вредных примесей; способность легко отделяться от металла сварочного шва в твердом состоянии.

Шлаковые включения в металле шва отрицательно влияют на его свойства. Они являются результатом присутствия в электродных покрытиях и флюсах кварца SiO2 и корунда Аl2O3 легкоплавкие включения. В металл шва из покрытий и флюсов может переходить сера, образующая соединение с железом (сульфид железа FeS). Такое соединение повышает склонность металла шва к появлению трещин при высоких температурах. К неметаллическим включениям относятся также химические соединения азота с металлами. При дуговой сварке сталей наибольшее влияние на свойства металла шва оказывают химические соединения азота с железом. Они обладают высокой твердостью и резко снижают пластические свойства металла.

Шлаковые включения делают металл неоднородным, ухудшают его свойства. По химическому составу шлаковые включения отличаются от наплавленного металла, что способствует появлению коррозии. Для снижения содержания шлаковых включений в металле сварочного шва зачищают поверхности в местах сварки; удаляют ржавчину, окалину и загрязнения со свариваемых поверхностей; зачищают поверхности сварных швов при многослойной сварке; увеличивают толщину слоя флюса для замедления скорости охлаждения сварного шва при сварке под флюсом; вводят в состав электродных покрытий и флюсов элементы, снижающие температуру плавления оксидов и образующие соединения, легко всплывающие в металле и удаляемые вместе со шлаковой коркой.