Материаловедение

Остаточные напряжения и деформации

При сварке в каждой точке сварного соединения или конструкции возникают напряжения и деформации. В начальный период сварки, когда происходит нагрев металла, и в процессе последующего охлаждения они существенно изменяются по величине, знаку, характеру распределения в том или ином сечении и их принято называть временными. Временные напряжения и деформации по мере охлаждения постепенно переходят в остаточные, которые для большинства конструкционных материалов существуют в металле в течение всего дальнейшего периода эксплуатации.

Неразрушающий контроль

ГОСТ 18353-79 "Контроль неразрушающий. Классификация видов и методов" в зависимости от физических явлений, положенных в основу неразрушающего контроля подразделяет его на виды:

- оптический;
- радиационный;
- акустический;
- магнитный;
- вихретоковый;
- электрический;
- радиоволновой;
- тепловой;
- проникающими веществами.

Характеристика и классификация чугунов

Чугун
сплав железа с углеродом, содержащий углерода от 2,14 до 6,67%. Наряду с углеродом в чугуне содержится кремний (Si), марганец (Mn), сера (S) и фосфор (Р). Содержание серы (S) и фосфора (Р) в чугуне больше, чем в стали. В специальные (легированные) чугуны вводят легирующие добавки - никель (Ni), молибден (Mo), ванадий (V), хром (Сr) и др.

Чугун делят:

Основные свойства углеродистых и легированных сталей

Сталью
сплав железа с углеродом, в котором содержание углерода не превышает 2%. Кроме углерода сталь содержит небольшое количество марганца (Mn), кремния (Si), серы (S) и фосфора (Р).

Стали подразделяют:

Металлографический анализ

Многочисленные и отличающиеся между собой методы исследования металлов можно разделить на две группы:

1. Методы, которые позволяют определить строение и преобразования, которые протекают в металлах. Эти методы делятся на структурные методы, которые позволяют непосредственно наблюдать строение металлов и методы, которые базируются на связи между строением и свойствами металлов.

2. Методы, которые позволяют непосредственно определять свойства металлов, прежде всего механические, а также физические химические и др.

Алюминий и алюминиевые сплавы

Первые предположения о наличии в глинах металла были высказаны английским ученым Деви в 1808 г., а в 1825 г. датчанин Эрстед получил первый алюминий. Широкое применение алюминия началось в конце XIX века.

Испытание материалов и сварных соединений

Механические свойства характеризуют сопротивление металла деформации и разрушению под действием механических сил (нагрузки).

К основным механическим свойствам относят:

- прочность
- пластичность
- ударную вязкость
- твердость

Прочность – это способность металла не разрушаться под действием механических сил (нагрузки).

Пластичность – это способность металла изменять форму (деформироваться) под действием механических сил (нагрузки) без разрушения.

Строение и свойства чистых металлов

Типичными свойствами металлов и их сплавов являются высокие тепло- и электропроводность, увеличивающаяся с понижением температуры. Отмеченные свойства металлов обусловлены их электронным строением. В металлах электроны, находящиеся на внешних оболочках (валентные электроны), не связаны с определенными атомами, а оторваны от них и принадлежат всему куску металла в целом. Такие электроны называют обычно электронами проводимости.

Легирование и диаграммы состояния

Различают два процесса кристаллизации жидкости: гомогенный - процесс образования твердых кристалликов происходит непосредственно из жидкости и гетерогенный - в жидкости уже присутствуют твердые частицы, и процесс затвердевания развивается путем увеличения их размеров. При гомогенном процессе каждый образовавшийся зародыш кристалла имеет свою ориентацию кристаллической решетки и, присоединяя к ней атомы из жидкости, образует зерно металла.

Железоуглеродистые сплавы

Диаграмма железо-углерод описывает превращения, происходящие при разных температурах с железоуглеродистыми сплавами. При этом существенный практический интерес имеет эвтектоидное превращение, то есть образование и распад аустенита. Начало перлито-аустенитного превращения сопровождается образованием первых зерен аустенита. Первые зерна аустенита образуются на границе между ферритом и цементитом - структурными составляющими перлита. Так как эта граница весьма разветвлена, то превращение начинается с образования множества мелких зерен.

Страницы