Металлургические процессы при газовой сварке, кристаллизация металла шва

Версия для печатиВерсия для печати

В процессе газовой сварки расплавленный металл сварочной ванны взаимодействует со сварочным пламенем. Это взаимодействие определяется свойствами свариваемого металла и составом сварочного пламени. Сваривают восстановительной зоной пламени, состоящей в основном из оксида углерода и водорода. Сварочная ванна характеризуется малым объемом расплавленного металла, высокой температурой в месте сварки и большой скоростью расплавления и кристаллизации металла.

Расплавленный металл ванны вступает во взаимодействие с газами сварочного пламени, в результате чего происходят реакции окисления и восстановления. Взаимодействие газов с различными металлами различно. Наиболее легко окисляются металлы, обладающие большим сродством к кислороду. Окисление расплавленного металла происходит как за счет оксидов, находящихся на поверхности свариваемого металла и присадочной проволоки, так и за счет кислорода окружающего воздуха. С увеличением содержания кислорода в свариваемом металле ухудшаются механические свойства сварного соединения. Поэтому при газовой сварке для большинства металлов и сплавов для устранения окислительных процессов в присадочные материалы и флюсы вводят специальные раскислители.

Раскислители
вещества, которые имеют большее сродство к кислороду, чем металл шва.

При газовой сварке стали раскисляющее действие оказывают углерод, оксид углерода и водорода, образующиеся при горении газовой смеси, подаваемой в сварочную горелку. Поэтому углеродистые стали можно сваривать без флюсов. Таким образом углерод (С), кремний (Si) и марганец (Мn) выполняют функции раскислители. Образующийся в процессе реакции оксид углерода вызывает кипение и разбрызгивание металла. Кипение сварочной ванны до начала кристаллизации способствует удалению посторонних металлических включений. Если металл кипит во время кристаллизации шва, то образующиеся пузыри оксида углерода не успевают выделяться и остаются в шве в виде газовых пор. Для уменьшения образования оксида углерода в сварочную ванну вводят раскислители (Мn и Si). На процесс окисления при сварке металлов большое влияние оказывает состав сварочного пламени. Образующиеся в процессе реакций оксиды кремния и марганца не растворяются в металле, всплывают на поверхность жидкого металла и переходят в шлаки. В жидком металле шва находится много разнородных оксидов, между которыми происходят химические реакции. В результате этих реакций образуются соединения с более низкой температурой плавления, чем сами оксиды, что облегчает удаление оксидов из расплавленного металла в виде шлака.

При газовой сварке алюминия, латуни и других металлов вводят флюсы, в состав которых входят компоненты, способствующие образованию легкоплавких соединений. Раскисление сварочной ванны частично осуществляется углеродом, оксидом углерода и водородом, имеющимися в сварочном пламени. При этом сварочное пламя не только восстанавливает оксиды но и защищает расплавленный металл от кислорода и азота воздуха. Нормальное ацетиленокислородное пламя в средней (восстановительной) зоне содержит 60% оксида углерода, 20% молекулярного и 20% атомарного водорода. Восстановителем железа из закиси железа в основном является атомарный водород. Он растворяется в расплавленном металле, а с понижением температуры стремится выделиться из сварочной ванны. Если затвердевание происходит достаточно быстро, то водород в виде газовых пузырей может остаться в сварном шве. Следовательно, водород, с одной стороны, защищает расплавленный металл от окисления, а также восстанавливает его из оксидов, а с другой стороны, может явиться причиной образования пористости и трещин.

Схема химической неоднородности по слоям кристаллизации в сварных швах

Рисунок 1 - Схема химической неоднородности по слоям кристаллизации в сварных швах

Процесс газовой сварки характеризуется относительно медленным охлаждением металла, поэтому водород и другие газы успевают выделиться из сварочной ванны и металл шва получается без пор. Поступающий в сварочную ванну азот воздуха снижает пластические свойства свариваемого металла, а также вызывает пористость в металле шва.

Кристаллизация металла шва

Процесс образования сварного соединения начинается с нагрева и расплавления основного и присадочного металлов.

Кристаллизация
процесс образования зерен из расплавленного металла при переходе его из жидкого состояния в твердое

Процесс кристаллизации сварных швов отличается от кристаллизации слитков высокими скоростями. Различают первичную и вторичную кристаллизации. Первичная кристаллизация осуществляется при высоких скоростях охлаждения, вторичная начинается с распада первичной в результате структурных превращений и заканчивается при низких температурах. Как и во всех случаях сварки плавлением кристаллизация металла шва осуществляется на зернах основного металла. Более медленный прогрев при газовой сварке основного металла приводит к большему росту зерен нерасплавленных кромок металла, а следовательно, и уменьшению количества центров кристаллизации формирующегося шва. Процесс кристаллизации сварных швов осуществляется прерывисто, этим и объясняется появление кристаллизационных слоев. Чем сильнее тепло-отвод и меньше объем жидкого металла, тем тоньше кристаллизационный слой. Кристаллизационные слои можно рассмотреть на специально изготовленных макрошлифах в любом сечении шва. Первый участок возникает в результате кристаллизации тонкой прослойки жидкого металла, примыкающей к оплавленной поверхности. Второй участок кристаллизуется из жидкого металла исходного материала.